Minimum Distance Estimation of Possibly Non-Invertible Moving Average Models
نویسندگان
چکیده
This paper considers estimation of moving average (MA) models with non-Gaussian errors. Information in higher order cumulants allows identification of the parameters without imposing invertibility. By allowing for an unbounded parameter space, the generalized method of moments estimator of the MA(1) model has classical (root-T and asymptotic normal) properties when the moving average root is inside, outside, and on the unit circle. For more general models where the dependence of the cumulants on the model parameters is analytically intractable, we consider simulation-based estimators with two features that distinguish them from the existing work in the literature. First, identification now requires information from the second and higher order moments of the data. Thus, in addition to an autoregressive model, new auxiliary regressions need to be considered. Second, the errors used to simulate the model are drawn from a flexible functional form to accommodate a large class of distributions with non-Gaussian features. The proposed simulation estimators are also asymptotically normally distributed without imposing the assumption of invertibility. In the application considered, there is overwhelming evidence of non-invertibility in the Fama-French portfolio returns. JEL Classification: C13, C15, C22
منابع مشابه
Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals
When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...
متن کاملChange Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering
In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...
متن کاملMinimum Distance Estimators for Nonparametric Models with Grouped Dependent Variables
This Version: January 2002 This paper develops minimum distance estimators for nonparametric models where the dependent variable is known only to fall in a specified group with observable thresholds, while its true value remains unobserved and possibly censored. Such data arise commonly in major U.S and U.K data sets where, e.g., the thresholds between which earnings fall are observed, but not ...
متن کاملParameter Estimation of Some Archimedean Copulas Based on Minimum Cramér-von-Mises Distance
The purpose of this paper is to introduce a new estimation method for estimating the Archimedean copula dependence parameter in the non-parametric setting. The estimation of the dependence parameter has been selected as the value that minimizes the Cramér-von-Mises distance which measures the distance between Empirical Bernstein Kendall distribution function and true Kendall distribution functi...
متن کاملMinimum-variance control of linear time-varying systems
The problem of generalised minimum variance control of linear time-varying discrete-time systems is studied. Standard time-varying controlled autoregressive moving average models are considered, and the sum of plant output tracking error variance plus a penalty term on plant input is chosen as the cost functional. The timevarying controller described is able to minimise the generalised tracking...
متن کامل